3.6.14 \(\int \frac {1}{\sqrt {d x} (a^2+2 a b x^2+b^2 x^4)} \, dx\)

Optimal. Leaf size=283 \[ -\frac {3 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}-\frac {3 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )} \]

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 283, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {28, 290, 329, 211, 1165, 628, 1162, 617, 204} \begin {gather*} -\frac {3 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}-\frac {3 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]

[Out]

Sqrt[d*x]/(2*a*d*(a + b*x^2)) - (3*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/
4)*b^(1/4)*Sqrt[d]) + (3*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(4*Sqrt[2]*a^(7/4)*b^(1/4)
*Sqrt[d]) - (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[2]*a^(7/4
)*b^(1/4)*Sqrt[d]) + (3*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(8*Sqrt[
2]*a^(7/4)*b^(1/4)*Sqrt[d])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx &=b^2 \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )^2} \, dx\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}+\frac {(3 b) \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )} \, dx}{4 a}\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}+\frac {(3 b) \operatorname {Subst}\left (\int \frac {1}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{2 a d}\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}+\frac {(3 b) \operatorname {Subst}\left (\int \frac {\sqrt {a} d-\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{4 a^{3/2} d^2}+\frac {(3 b) \operatorname {Subst}\left (\int \frac {\sqrt {a} d+\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{4 a^{3/2} d^2}\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{8 a^{3/2} \sqrt {b}}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{8 a^{3/2} \sqrt {b}}-\frac {3 \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}-\frac {3 \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}-\frac {3 \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}\\ &=\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}-\frac {3 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}-\frac {3 \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 211, normalized size = 0.75 \begin {gather*} \frac {\sqrt {x} \left (\frac {8 a^{3/4} \sqrt {x}}{a+b x^2}-\frac {3 \sqrt {2} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{\sqrt [4]{b}}+\frac {3 \sqrt {2} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{\sqrt [4]{b}}-\frac {6 \sqrt {2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt [4]{b}}+\frac {6 \sqrt {2} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt [4]{b}}\right )}{16 a^{7/4} \sqrt {d x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]

[Out]

(Sqrt[x]*((8*a^(3/4)*Sqrt[x])/(a + b*x^2) - (6*Sqrt[2]*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/b^(1/4)
+ (6*Sqrt[2]*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/b^(1/4) - (3*Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)
*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/b^(1/4) + (3*Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]
)/b^(1/4)))/(16*a^(7/4)*Sqrt[d*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.40, size = 181, normalized size = 0.64 \begin {gather*} -\frac {3 \tan ^{-1}\left (\frac {\frac {\sqrt [4]{a} \sqrt {d}}{\sqrt {2} \sqrt [4]{b}}-\frac {\sqrt [4]{b} \sqrt {d} x}{\sqrt {2} \sqrt [4]{a}}}{\sqrt {d x}}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {3 \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}}{\sqrt {a} d+\sqrt {b} d x}\right )}{4 \sqrt {2} a^{7/4} \sqrt [4]{b} \sqrt {d}}+\frac {d \sqrt {d x}}{2 a \left (a d^2+b d^2 x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]

[Out]

(d*Sqrt[d*x])/(2*a*(a*d^2 + b*d^2*x^2)) - (3*ArcTan[((a^(1/4)*Sqrt[d])/(Sqrt[2]*b^(1/4)) - (b^(1/4)*Sqrt[d]*x)
/(Sqrt[2]*a^(1/4)))/Sqrt[d*x]])/(4*Sqrt[2]*a^(7/4)*b^(1/4)*Sqrt[d]) + (3*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt
[d]*Sqrt[d*x])/(Sqrt[a]*d + Sqrt[b]*d*x)])/(4*Sqrt[2]*a^(7/4)*b^(1/4)*Sqrt[d])

________________________________________________________________________________________

fricas [A]  time = 2.31, size = 232, normalized size = 0.82 \begin {gather*} \frac {12 \, {\left (a b d x^{2} + a^{2} d\right )} \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {1}{4}} \arctan \left (\sqrt {a^{4} d^{2} \sqrt {-\frac {1}{a^{7} b d^{2}}} + d x} a^{5} b d \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {3}{4}} - \sqrt {d x} a^{5} b d \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {3}{4}}\right ) + 3 \, {\left (a b d x^{2} + a^{2} d\right )} \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {1}{4}} \log \left (a^{2} d \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - 3 \, {\left (a b d x^{2} + a^{2} d\right )} \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {1}{4}} \log \left (-a^{2} d \left (-\frac {1}{a^{7} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) + 4 \, \sqrt {d x}}{8 \, {\left (a b d x^{2} + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="fricas")

[Out]

1/8*(12*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)*arctan(sqrt(a^4*d^2*sqrt(-1/(a^7*b*d^2)) + d*x)*a^5*b*d*(-1
/(a^7*b*d^2))^(3/4) - sqrt(d*x)*a^5*b*d*(-1/(a^7*b*d^2))^(3/4)) + 3*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)
*log(a^2*d*(-1/(a^7*b*d^2))^(1/4) + sqrt(d*x)) - 3*(a*b*d*x^2 + a^2*d)*(-1/(a^7*b*d^2))^(1/4)*log(-a^2*d*(-1/(
a^7*b*d^2))^(1/4) + sqrt(d*x)) + 4*sqrt(d*x))/(a*b*d*x^2 + a^2*d)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 269, normalized size = 0.95 \begin {gather*} \frac {\sqrt {d x} d}{2 \, {\left (b d^{2} x^{2} + a d^{2}\right )} a} + \frac {3 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b d} + \frac {3 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{2} b d} + \frac {3 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{2} b d} - \frac {3 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{2} b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="giac")

[Out]

1/2*sqrt(d*x)*d/((b*d^2*x^2 + a*d^2)*a) + 3/8*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^
(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b*d) + 3/8*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(
a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b*d) + 3/16*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a
*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^2*b*d) - 3/16*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x - sqrt(2)*(a*d^2/b
)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^2*b*d)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 207, normalized size = 0.73 \begin {gather*} \frac {\sqrt {d x}\, d}{2 \left (b \,d^{2} x^{2}+d^{2} a \right ) a}+\frac {3 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )}{8 a^{2} d}+\frac {3 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )}{8 a^{2} d}+\frac {3 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )}{16 a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x)

[Out]

1/2*d*(d*x)^(1/2)/a/(b*d^2*x^2+a*d^2)+3/16/d/a^2*(a/b*d^2)^(1/4)*2^(1/2)*ln((d*x+(a/b*d^2)^(1/4)*(d*x)^(1/2)*2
^(1/2)+(a/b*d^2)^(1/2))/(d*x-(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2)))+3/8/d/a^2*(a/b*d^2)^(1/4)*2
^(1/2)*arctan(2^(1/2)/(a/b*d^2)^(1/4)*(d*x)^(1/2)+1)+3/8/d/a^2*(a/b*d^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/b*d^2
)^(1/4)*(d*x)^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 3.00, size = 261, normalized size = 0.92 \begin {gather*} \frac {\frac {8 \, \sqrt {d x} d^{2}}{a b d^{2} x^{2} + a^{2} d^{2}} + \frac {3 \, {\left (\frac {\sqrt {2} d^{2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} d^{2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} + \frac {2 \, \sqrt {2} d \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}} + \frac {2 \, \sqrt {2} d \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}}\right )}}{a}}{16 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)/(d*x)^(1/2),x, algorithm="maxima")

[Out]

1/16*(8*sqrt(d*x)*d^2/(a*b*d^2*x^2 + a^2*d^2) + 3*(sqrt(2)*d^2*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*
x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) - sqrt(2)*d^2*log(sqrt(b)*d*x - sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x
)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) + 2*sqrt(2)*d*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4)
 + 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)) + 2*sqrt(2)*d*arctan(-1/2*s
qrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)
*sqrt(a)))/a)/d

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 90, normalized size = 0.32 \begin {gather*} \frac {3\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{7/4}\,b^{1/4}\,\sqrt {d}}+\frac {3\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{7/4}\,b^{1/4}\,\sqrt {d}}+\frac {d\,\sqrt {d\,x}}{2\,a\,\left (b\,d^2\,x^2+a\,d^2\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d*x)^(1/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)),x)

[Out]

(3*atan((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(4*(-a)^(7/4)*b^(1/4)*d^(1/2)) + (3*atanh((b^(1/4)*(d*x)^
(1/2))/((-a)^(1/4)*d^(1/2))))/(4*(-a)^(7/4)*b^(1/4)*d^(1/2)) + (d*(d*x)^(1/2))/(2*a*(a*d^2 + b*d^2*x^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {d x} \left (a + b x^{2}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b**2*x**4+2*a*b*x**2+a**2)/(d*x)**(1/2),x)

[Out]

Integral(1/(sqrt(d*x)*(a + b*x**2)**2), x)

________________________________________________________________________________________